Инженерные системы и сети в строительстве

Если угловой коэффициент равен 0. Угловой коэффициент касательной как тангенс угла наклона

Численно равен тангенсу угла (составляющего наименьший поворот от оси Ox к оси Оу) между положительным направлением оси абсцисс и данной прямой линией.

Тангенс угла может рассчитываться как отношение противолежащего катета к прилежащему. k всегда равен , то есть производной уравнения прямой по x .

При положительных значениях углового коэффициента k и нулевом значении коэффициента сдвига b прямая будет лежать в первом и третьем квадрантах (в которых x и y одновременно положительны и отрицательны). При этом большим значениям углового коэффициента k будет соответствовать более крутая прямая, а меньшим - более пологая.

Прямые и перпендикулярны, если , а параллельны при .

Примечания


Wikimedia Foundation . 2010 .

  • Ифит (царь Элиды)
  • Список Указов Президента РФ «О награждении государственными наградами» за 2001 год

Смотреть что такое "Угловой коэффициент прямой" в других словарях:

    угловой коэффициент (прямой) - — Тематики нефтегазовая промышленность EN slope … Справочник технического переводчика

    Угловой коэффициент - (математическое) число k в уравнении прямой линии на плоскости у = kx+b (см. Аналитическая геометрия), характеризующее наклон прямой относительно оси абсцисс. В прямоугольной системе координат У. к. k = tg φ, где φ угол между… … Большая советская энциклопедия

    Уравнения прямой

    АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ - раздел геометрии, который исследует простейшие геометрические объекты средствами элементарной алгебры на основе метода координат. Создание аналитической геометрии обычно приписывают Р.Декарту, изложившему ее основы в последней главе своего… … Энциклопедия Кольера

    Время реакции (reaction time) - Измерение времени реакции (ВР), вероятно, самый почтенный предмет в эмпирической психологии. Оно зародилось в области астрономии, в 1823 г., с измерением индивидуальных различий в скорости восприятия пересечения звездой линии риски телескопа. Эти … Психологическая энциклопедия

    МАТЕМАТИЧЕСКИЙ АНАЛИЗ - раздел математики, дающий методы количественного исследования разных процессов изменения; занимается изучением скорости изменения (дифференциальное исчисление) и определением длин кривых, площадей и объемов фигур, ограниченных кривыми контурами и … Энциклопедия Кольера

    Прямая - У этого термина существуют и другие значения, см. Прямая (значения). Прямая одно из основных понятий геометрии, то есть точного универсального определения не имеет. При систематическом изложении геометрии прямая линия обычно принимается за одно… … Википедия

    Прямая линия - Изображение прямых в прямоугольной системе координат Прямая одно из основных понятий геометрии. При систематическом изложении геометрии прямая линия обычно принимается за одно из исходных понятий, которое лишь косвенным образом определяется… … Википедия

    Прямые - Изображение прямых в прямоугольной системе координат Прямая одно из основных понятий геометрии. При систематическом изложении геометрии прямая линия обычно принимается за одно из исходных понятий, которое лишь косвенным образом определяется… … Википедия

    Малая полуось - Не следует путать с термином «Эллипсис». Эллипс и его фокусы Эллипс (др. греч. ἔλλειψις недостаток, в смысле недостатка эксцентриситета до 1) геометрическое место точек M Евклидовой плоскости, для которых сумма расстояний от двух данных точек F1… … Википедия

В предыдущей главе было показано, что, выбрав определенную систему координат на плоскости, мы можем геометрическое свойства, характеризующее точки рассматриваемой линии, выразить аналитически уравнением между текущими координатами. Таким образом, мы получим уравнение линии. В этой главе будут рассматриваться уравнения прямых линий.

Чтобы составить уравнение прямой в декартовых координатах, нужно каким-то образом задать условия, определяющие положение ее относительно координатных осей.

Предварительно мы введем понятие об угловом коэффициенте прямой, который является одной из величин, характеризующих положение прямой на плоскости.

Назовем углом наклона прямой к оси Ох тот угол, на который нужно повернуть ось Ох, чтобы она совпала с данной прямой (или оказалась параллельной ей). Как обычно, угол будем рассматривать с учетом знака (знак определяется направлением поворота: против или по часовой стрелке). Так как добавочный поворот оси Ох на угол в 180° снова совместит ее с прямой, то угол наклона прямой к оси может быть выбран не однозначно (с точностью до слагаемого, кратного ).

Тангенс этого угла определяется однозначно (так как изменение угла на не меняет его тангенса).

Тангенс угла наклона прямой к оси Ох называется угловым коэффициентом прямой.

Угловой коэффициент характеризует направление прямой (мы здесь не различаем двух взаимно противоположных направлений прямой). Если угловой коэффициент прямой равен нулю, то прямая параллельна оси абсцисс. При положительном угловом коэффициенте угол наклона прямой к оси Ох будет острым (мы рассматриваем здесь наименьшее положительное значение угла наклона) (рис. 39); при этом чем больше угловой коэффициент, тем больше угол ее наклона к оси Ох. Если угловой коэффициент отрицателен, то угол наклона прямой к оси Ох будет тупым (рис. 40). Заметим, что прямая, перпендикулярная к оси Ох, не имеет углового коэффициента (тангенс угла не существует).

Продолжение темы уравнение прямой на плоскости основывается на изучении прямой линии из уроков алгебры. Данная статья дает обобщенную информацию по теме уравнения прямой с угловым коэффициентом. Рассмотрим определения, получим само уравнение, выявим связь с другими видами уравнений. Все будет рассмотрено на примерах решений задач.

Перед записью такого уравнения необходимо дать определение угла наклона прямой к оси О х с их угловым коэффициентом. Допустим, что задана декартова система координат О х на плоскости.

Определение 1

Угол наклона прямой к оси О х, расположенный в декартовой системе координат О х у на плоскости, это угол, который отсчитывается от положительного направления О х к прямой против часовой стрелки.

Когда прямая параллельна О х или происходит совпадение в ней, угол наклона равен 0 . Тогда угол наклона заданной прямой α определен на промежутке [ 0 , π) .

Определение 2

Угловой коэффициент прямой – это тангенс угла наклона заданной прямой.

Стандартное обозначение буквой k . Из определения получим, что k = t g α . Когда прямая параллельна Ох, говорят, что угловой коэффициент не существует, так как он обращается в бесконечность.

Угловой коэффициент положительный, когда график функции возрастает и наоборот. На рисунке показаны различные вариации расположения прямого угла относительно системы координат со значением коэффициента.

Для нахождения данного угла необходимо применить определение об угловом коэффициенте и произвести вычисление тангенса угла наклона в плоскости.

Решение

Из условия имеем, что α = 120 ° . По определению необходимо вычислить угловой коэффициент. Найдем его из формулы k = t g α = 120 = - 3 .

Ответ: k = - 3 .

Если известен угловой коэффициент, а необходимо найти угол наклона к оси абсцисс, тогда следует учитывать значение углового коэффициента. Если k > 0 , тогда угол прямой острый и находится по формуле α = a r c t g k . Если k < 0 , тогда угол тупой, что дает право определить его по формуле α = π - a r c t g k .

Пример 2

Определить угол наклона заданной прямой к О х при угловом коэффициенте равном 3 .

Решение

Из условия имеем, что угловой коэффициент положительный, а это значит, что угол наклона к О х меньше 90 градусов. Вычисления производятся по формуле α = a r c t g k = a r c t g 3 .

Ответ: α = a r c t g 3 .

Пример 3

Найти угол наклона прямой к оси О х, если угловой коэффициент = - 1 3 .

Решение

Если принять за обозначение углового коэффициента букву k , тогда α является углом наклона к заданной прямой по положительному направлению О х. Отсюда k = - 1 3 < 0 , тогда необходимо применить формулу α = π - a r c t g k При подстановке получим выражение:

α = π - a r c t g - 1 3 = π - a r c t g 1 3 = π - π 6 = 5 π 6 .

Ответ: 5 π 6 .

Уравнение вида y = k · x + b , где k является угловым коэффициентом, а b некоторым действительным числом, называют уравнением прямой с угловым коэффициентом. Уравнение характерно для любой прямой, непараллельной оси О у.

Если подробно рассмотреть прямую на плоскости в фиксированной системе координат, которая задана уравнением с угловым коэффициентом, который имеет вид y = k · x + b . В данном случае значит, что уравнению соответствуют координаты любой точки прямой. Если подставить координаты точки М, M 1 (x 1 , y 1) , в уравнение y = k · x + b , тогда в этом случае прямая будет проходить через эту точку, иначе точка не принадлежит прямой.

Пример 4

Задана прямая с угловым коэффициентом y = 1 3 x - 1 . Вычислить, принадлежат ли точки M 1 (3 , 0) и M 2 (2 , - 2) заданной прямой.

Решение

Необходимо подставить координаты точки M 1 (3 , 0) в заданное уравнение, тогда получим 0 = 1 3 · 3 - 1 ⇔ 0 = 0 . Равенство верно, значит точка принадлежит прямой.

Если подставим координаты точки M 2 (2 , - 2) , тогда получим неверное равенство вида - 2 = 1 3 · 2 - 1 ⇔ - 2 = - 1 3 . Можно сделать вывод, что точка М 2 не принадлежит прямой.

Ответ: М 1 принадлежит прямой, а М 2 нет.

Известно, что прямая определена уравнением y = k · x + b , проходящим через M 1 (0 , b) , при подстановке получили равенство вида b = k · 0 + b ⇔ b = b . Отсюда можно сделать вывод, что уравнение прямой с угловым коэффициентом y = k · x + b на плоскости определяет прямую, которая проходит через точку 0 , b . Она образует угол α с положительным направлением оси О х, где k = t g α .

Рассмотрим на примере прямую, определенную при помощи углового коэффициента, заданного по виду y = 3 · x - 1 . Получим, что прямая пройдет через точку с координатой 0 , - 1 с наклоном в α = a r c t g 3 = π 3 радиан по положительному направлению оси О х. Отсюда видно, что коэффициент равен 3 .

Уравнение прямой с угловым коэффициентом, проходящей через заданную точку

Необходимо решить задачу, где необходимо получить уравнение прямой с заданным угловым коэффициентом, проходящим через точку M 1 (x 1 , y 1) .

Равенство y 1 = k · x + b можно считать справедливым, так как прямая проходит через точку M 1 (x 1 , y 1) . Чтобы убрать число b, необходимо из левой и правой частей вычесть уравнение с угловым коэффициентом. Из этого следует, что y - y 1 = k · (x - x 1) . Данное равенство называют уравнением прямой с заданным угловым коэффициентом k, проходящая через координаты точки M 1 (x 1 , y 1) .

Пример 5

Составьте уравнение прямой, проходящей через точку М 1 с координатами (4 , - 1) , с угловым коэффициентом равным - 2 .

Решение

По условию имеем, что x 1 = 4 , y 1 = - 1 , k = - 2 . Отсюда уравнение прямой запишется таким образом y - y 1 = k · (x - x 1) ⇔ y - (- 1) = - 2 · (x - 4) ⇔ y = - 2 x + 7 .

Ответ: y = - 2 x + 7 .

Пример 6

Написать уравнение прямой с угловым коэффициентом, которое проходит через точку М 1 с координатами (3 , 5) , параллельную прямой y = 2 x - 2 .

Решение

По условию имеем, что параллельные прямые имеют совпадающие углы наклона, отсюда значит, что угловые коэффициенты являются равными. Чтобы найти угловой коэффициент из данного уравнения, необходимо вспомнить его основную формулу y = 2 x - 2 , отсюда следует, что k = 2 . Составляем уравнение с угловым коэффициентом и получаем:

y - y 1 = k · (x - x 1) ⇔ y - 5 = 2 · (x - 3) ⇔ y = 2 x - 1

Ответ: y = 2 x - 1 .

Переход от уравнения прямой с угловым коэффициентом к другим видам уравнений прямой и обратно

Такое уравнение не всегда применимо для решения задач, так как имеет не совсем удобную запись. Для этого необходимо представлять в другом виде. Например, уравнение вида y = k · x + b не позволяет записать координаты направляющего вектора прямой или координаты нормального вектора. Для этого нужно научиться представлять уравнениями другого вида.

Можем получить каноническое уравнение прямой на плоскости, используя уравнение прямой с угловым коэффициентом. Получаем x - x 1 a x = y - y 1 a y . Необходимо слагаемое b перенести в левую часть и поделить на выражение полученного неравенства. Тогда получим уравнение вида y = k · x + b ⇔ y - b = k · x ⇔ k · x k = y - b k ⇔ x 1 = y - b k .

Уравнение прямой с угловым коэффициентом стало каноническим уравнением данной прямой.

Пример 7

Привести уравнение прямой с угловым коэффициентом y = - 3 x + 12 к каноническому виду.

Решение

Вычислим и представим в виде канонического уравнения прямой. Получим уравнение вида:

y = - 3 x + 12 ⇔ - 3 x = y - 12 ⇔ - 3 x - 3 = y - 12 - 3 ⇔ x 1 = y - 12 - 3

Ответ: x 1 = y - 12 - 3 .

Общее уравнение прямой проще всего получить из y = k · x + b , но для этого необходимо произвести преобразования: y = k · x + b ⇔ k · x - y + b = 0 . Производится переход из общего уравнения прямой к уравнениям другого вида.

Пример 8

Дано уравнение прямой вида y = 1 7 x - 2 . Выяснить, является ли вектор с координатами a → = (- 1 , 7) нормальным вектором прямой?

Решение

Для решения необходимо перейти к другому виду данного уравнения, для этого запишем:

y = 1 7 x - 2 ⇔ 1 7 x - y - 2 = 0

Коэффициенты перед переменными являются координатами нормального вектора прямой. Запишем это так n → = 1 7 , - 1 , отсюда 1 7 x - y - 2 = 0 . Понятно, что вектор a → = (- 1 , 7) коллинеарен вектору n → = 1 7 , - 1 , так как имеем справедливое соотношение a → = - 7 · n → . Отсюда следует, что исходный вектор a → = - 1 , 7 - нормальный вектор прямой 1 7 x - y - 2 = 0 , значит, считается нормальным вектором для прямой y = 1 7 x - 2 .

Ответ: Является

Решим задачу обратную данной.

Необходимо перейти от общего вида уравнения A x + B y + C = 0 , где B ≠ 0 , к уравнению с угловым коэффициентом. для этого решаем уравнение относительно у. Получим A x + B y + C = 0 ⇔ - A B · x - C B .

Результат и является уравннием с угловым коэффициентом, который равняется - A B .

Пример 9

Задано уравнение прямой вида 2 3 x - 4 y + 1 = 0 . Получить уравнение данной прямой с угловым коэффициентом.

Решение

Исходя из условия, необходимо решить относительно у, тогда получим уравнение вида:

2 3 x - 4 y + 1 = 0 ⇔ 4 y = 2 3 x + 1 ⇔ y = 1 4 · 2 3 x + 1 ⇔ y = 1 6 x + 1 4 .

Ответ: y = 1 6 x + 1 4 .

Аналогичным образом решается уравнение вида x a + y b = 1 , которое называют уравнение прямой в отрезках, или каноническое вида x - x 1 a x = y - y 1 a y . Нужно решить его относительно у, только тогда получим уравнение с угловым коэффициентом:

x a + y b = 1 ⇔ y b = 1 - x a ⇔ y = - b a · x + b .

Каноническое уравнение можно привести к виду с угловым коэффициентом. Для этого:

x - x 1 a x = y - y 1 a y ⇔ a y · (x - x 1) = a x · (y - y 1) ⇔ ⇔ a x · y = a y · x - a y · x 1 + a x · y 1 ⇔ y = a y a x · x - a y a x · x 1 + y 1

Пример 10

Имеется прямая, заданная уравнением x 2 + y - 3 = 1 . Привести к виду уравнения с угловым коэффициентом.

Решение.

Исходя из условия, необходимо преобразовать, тогда получим уравнение вида _formula_. Обе части уравнения следует умножить на - 3 для того, чтобы получить необходимо уравнение с угловым коэффициентом. Преобразуя, получим:

y - 3 = 1 - x 2 ⇔ - 3 · y - 3 = - 3 · 1 - x 2 ⇔ y = 3 2 x - 3 .

Ответ: y = 3 2 x - 3 .

Пример 11

Уравнение прямой вида x - 2 2 = y + 1 5 привести к виду с угловым коэффициентом.

Решение

Необходимо выражение x - 2 2 = y + 1 5 вычислить как пропорцию. Получим, что 5 · (x - 2) = 2 · (y + 1) . Теперь необходимо полностью его разрешить, для этого:

5 · (x - 2) = 2 · (y + 1) ⇔ 5 x - 10 = 2 y + 2 ⇔ 2 y = 5 x - 12 ⇔ y = 5 2 x

Ответ: y = 5 2 x - 6 .

Для решения таких заданий следует приводит параметрические уравнения прямой вида x = x 1 + a x · λ y = y 1 + a y · λ к каноническому уравнению прямой, только после этого можно переходить к уравнению с угловым коэффициентом.

Пример 12

Найти угловой коэффициент прямой, если она задана параметрическими уравнениями x = λ y = - 1 + 2 · λ .

Решение

Необходимо выполнить переход от параметрического вида к угловому коэффициенту. Для этого найдем каноническое уравнение из заданного параметрического:

x = λ y = - 1 + 2 · λ ⇔ λ = x λ = y + 1 2 ⇔ x 1 = y + 1 2 .

Теперь необходимо разрешить данное равенство относительно y , чтобы получить уравнение прямой с угловым коэффициентом. для этого запишем таким образом:

x 1 = y + 1 2 ⇔ 2 · x = 1 · (y + 1) ⇔ y = 2 x - 1

Отсюда следует, что угловой коэффициент прямой равен 2 . Это записывается как k = 2 .

Ответ: k = 2 .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Задачи на нахождение производной касательной включены в ЕГЭ по математике и встречаются там ежегодно. При этом статистика последних лет показывает, что подобные задания вызывают у выпускников определенные затруднения. Поэтому, если учащийся рассчитывает получить достойные баллы по итогам прохождения ЕГЭ, то ему непременно стоит научиться справляться с задачами из раздела «Угловой коэффициент касательной как значение производной в точке касания», подготовленными специалистами образовательного портала «Школково». Разобравшись с алгоритмом их решения, ученик сможет успешно преодолеть аттестационное испытание.

Основные моменты

Приступая к решению задач ЕГЭ по данной теме, необходимо вспомнить основное определение: производная функции в точке равна угловому коэффициенту касательной к графику функции в этой точке. В этом и состоит геометрический смысл производной.

Необходимо освежить в памяти и другое важное определение. Оно звучит следующим образом: угловой коэффициент равняется тангенсу угла наклона касательной к оси абсцисс.

Какие еще важные моменты стоит отметить в этой теме? При решении задач на нахождение производной в ЕГЭ необходимо помнить, что угол, который образует касательная, может быть меньше, больше 90 градусов или равняться нулю.

Как подготовиться к экзамену?

Для того, чтобы задания в ЕГЭ на тему «Угловой коэффициент касательной как значение производной в точке касания» давались вам достаточно легко, воспользуйтесь при подготовке к выпускному испытанию информацией по этому разделу на образовательном портале «Школково». Здесь вы найдете необходимый теоретический материал, собранный и понятно изложенный нашими специалистами, а также сможете попрактиковаться в выполнении упражнений.

Для каждого задания, например, задач на тему «Угловой коэффициент касательной как тангенс угла наклона» , мы прописали правильный ответ и алгоритм решения. При этом учащиеся могут выполнять упражнения различного уровня сложности в режиме онлайн. В случае необходимости задачу можно сохранить в разделе «Избранное», чтобы потом обсудить ее решение с преподавателем.

Научитесь брать производные от функций. Производная характеризует скорость изменения функции в определенной точке, лежащей на графике этой функции. В данном случае графиком может быть как прямая, так и кривая линия. То есть производная характеризует скорость изменения функции в конкретный момент времени. Вспомните общие правила, по которым берутся производные, и только потом переходите к следующему шагу.

  • Прочитайте статью .
  • Как брать простейшие производные, например, производную показательного уравнения, описано . Вычисления, представленные в следующих шагах, будут основаны на описанных в ней методах.

Научитесь различать задачи, в которых угловой коэффициент требуется вычислить через производную функции. В задачах не всегда предлагается найти угловой коэффициент или производную функции. Например, вас могут попросить найти скорость изменения функции в точке А(х,у). Также вас могут попросить найти угловой коэффициент касательной в точке А(х,у). В обоих случаях необходимо брать производную функции.

Возьмите производную данной вам функции. Здесь строить график не нужно – вам понадобится только уравнение функции. В нашем примере возьмите производную функции f (x) = 2 x 2 + 6 x {\displaystyle f(x)=2x^{2}+6x} . Берите производную согласно методам, изложенным в упомянутой выше статье:

В найденную производную подставьте координаты данной вам точки, чтобы вычислить угловой коэффициент. Производная функции равна угловому коэффициенту в определенной точке. Другими словами, f"(х) – это угловой коэффициент функции в любой точке (x,f(x)). В нашем примере:

  • Если возможно, проверьте полученный ответ на графике. Помните, что угловой коэффициент можно вычислить не в каждой точке. Дифференциальное исчисление рассматривает сложные функции и сложные графики, где угловой коэффициент можно вычислить не в каждой точке, а в некоторых случаях точки вообще не лежат на графиках. Если возможно, используйте графический калькулятор, чтобы проверить правильность вычисления углового коэффициента данной вам функции. В противном случае проведите касательную к графику в данной вам точке и подумайте, соответствует ли найденное вами значение углового коэффициента тому, что вы видите на графике.

    • Касательная будет иметь тот же угловой коэффициент, что и график функции в определенной точке. Для того, чтобы провести касательную в данной точке, двигайтесь вправо/влево по оси Х (в нашем примере на 22 значения вправо), а затем вверх на единицу по оси Y. Отметьте точку, а затем соедините ее с данной вам точкой. В нашем примере соедините точки с координатами (4,2) и (26,3).


  • Похожие публикации